Self-Supervised Learning

Xiaohang Zhan
MMLab, The Chinese University of Hong Kong

June 2020

What is Self-Supervised Learning?

What is Self-Supervised Learning?

Self-Supervised Learning Annotation free To learn something new Does image inpainting belong to self-supervised learning?

A typical pipeline

Self-Supervised Proxy/Pretext Tasks

Why does SSL learn new information?

Prior

• Appearance prior

Image Colorization

Image In-painting

• Physics prior

Rotation Prediction

• Motion tendency prior

Motion prediction (Fine-tuned for seg: 39.7% mIoU)

Kinematics prior

Motion propagation (Fine-tuned for seg: 44.5% mIoU)

Low-entropy priors are more predictable.

Coherence

• Spatial coherence

Solving Jigsaw Puzzles

Temporal coherence

Temporal order verification

Structure

Image i Image j Intra-image Intra-image Transform Transform Pull together Pull together Push apart

Instance Discrimination (Contrastive Learning)

- NIPD
- CPC
- MoCo
- SimCLR
- ...

Optimal solution #1

Optimal solution #2

What to consider in proxy task design?

Continuity

Solving Jigsaw Puzzles

Solution regarding continuity

Solving Jigsaw Puzzles

• Chromatic Aberration

Distortion

• Coma

Vignetting

Do not apply heavy vignetting effects in your photos!!!

Solution regarding aberration

Solving Jigsaw Puzzles

Ambiguity

Appearance prior

Image Colorization

Image In-painting

Physics prior

Rotation Prediction

• Motion tendency prior

Motion prediction (Fine-tuned for seg: 39.7% mIoU)

Kinematics prior

Motion propagation (Fine-tuned for seg: 44.5% mIoU)

- 1. Low-entropy priors are less ambiguous.
- 2. Any other solutions?

Difficulty

Easy mode

Normal mode

Difficult mode

Hell mode

How to design the difficulty of the task?

Summary

- 1. Learning from unlabeled data is feasible through:
 - a) prior
 - b) coherence
 - c) structure
- 2. In designing proxy tasks, you have to consider:
 - a) shortcuts
 - b) ambiguity
 - c) difficulty

Self-Supervised Scene De-occlusion

Xiaohang Zhan¹, Xingang Pan¹, Bo Dai¹, Ziwei Liu¹, Dahua Lin¹, Chen Change Loy²

¹MMLab, The Chinese University of Hong Kong

²Nanyang Technological University

CVPR 2020 Oral

What We Have

A typical instance segmentation dataset:

Modal masks & Category labels

Scene De-occlusion

Real-world scene

Intact objects with invisible parts + ordering graph

Background

Tasks to Solve

Amodal Completion

What if we do not have the ground truth?

Partial Completion

To Do

- ✓ Partial completion mechanism
 - Complete part of an object occluded by a given occluder, without amodal annotations.
- ? Ordering recovery
 - Predict the occluders of an object.

Trained with case 1: always encourages increment of pixels

Trained with case 1 & 2:

if the target object looks like to be occluded by the surrogate object: complete it

else:

keep unmodified

Train Partial Completion Net-Mask (PCNet-M)

SINGAPORE

Dual-Completion for Ordering Recovery

(a) Regarding A1 as the target and A2 as the surrogate occluder, the incremental area of A1: $\Delta A_1' | A_2$

(b) Regarding A2 as the target and A1 as the surrogate occluder, the incremental area of A2: $\Delta A_2' | A_1|$

Decision: $\Delta A_1' | A_2 < \Delta A_2' | A_1 \Rightarrow A1$ is above A2

To Do

- ✓ Partial completion
 - Complete part of an object occluded by a given occluder, without amodal annotations.
- ✓ Ordering recovery
 - Predict the occluders of an object.
- ? Amodal completion
 - Predict the amodal mask of each object given its occluders.

Ordering-Grounded Amodal Completion

SINGAPORE

Why All Ancestors?

- ✓ Partial completion
 - Complete part of an object occluded by a given occluder, without amodal annotations.
- ✓ Ordering recovery
 - Predict the occluders of an object.
- ✓ Amodal completion
 - Predict the amodal mask given occluders.
- ? Content completion
 - Is it the same as image inpainting?

Train Partial Completion Net-Content (PCNet-C)

Amodal-Constrained Content Completion

Compared to Image Inpainting

Scene De-occlusion

Real-world scene

Objects with invisible parts + ordering graph

Background

Todo list

- ✓ Partial completion
 - Complete part of an object occluded by a given occluder, without amodal annotations.
- ✓ Ordering recovery
 - Predict the occluders of an object.
- ✓ Amodal completion
 - Predict the amodal mask given occluders.
- ✓ Content completion
 - Slightly different from image inpainting.

self-supervised training framework

progressive inference scheme

Evaluations

Table 1: Ordering estimation on COCOA validation and KINS testing sets, reported with pair-wise accuracy on occluded instance pairs.

method	gt order (train)	COCOA	KINS			
Supervised						
OrderNet ^M [16]	~	81.7	87.5			
OrderNet ^{M+I} [16]	V	88.3	94.1			
Unsupervised						
Area	×	62.4	77.4			
Y-axis	×	58.7	81.9			
Convex	×	76.0	76.3			
Ours	×	87.1	92.5			

Table 2: Amodal completion on COCOA validation and KINS testing sets, using ground truth modal masks.

method	amodal (train)	COCOA %mIoU	KINS %mIoU
Supervised	V	82.53	94.81
Raw	×	65.47	87.03
Convex ^R	×	74.43	90.75
Ours (NOG)	×	76.91	93.42
Ours (OG)	×	81.35	94.76

Ordering Recovery

Amodal Completion

Pseudo Amodal Masks v.s. Manual Annotations

Table 4: Amodal instance segmentation on KINS testing set. Convex^R means using predicted order to refine the convex hull. In this experimental setting, all methods detect and segment instances from raw images. Hence, modal masks are not used in testing.

Using manual annotations

Ann. source	modal (train)	amodal (train)	%mAP
→ GT [<u>17</u>]	×	V	29.3
Raw	~	×	22.7
Convex	~	×	22.2
Convex ^R	~	×	25.9
Ours	V	×	29.3

Using our pseudo annotations

Maybe in the future, we do not need to annotate amodal masks **anymore!**

Demo: Scene Re-organization

Watch the video here: https://xiaohangzhan.github.io/projects/deocclusion/

Future Directions with Self-Supervised Scene De-occlusion

- Data augmentation / re-composition for instance segmentation.
 - Previous: InstaBoost [ICCV'2019]
- Ordering prediction for mask fusion in panoptic segmentation.
- Occlusion-aware augmented reality.

No need for extra annotations!

What's the Intrinsic Methodology?

Essence: prior of shape

Target: scene de-occlusion

Messages to take away

1. Our world is low-entropy, working in rules.

2. The visual observations reflect the intrinsic rules.

3. Deep learning is skilled in processing visual observations.

Thank you!

Discussions

Can it solve mutual occlusion? **No.**

Can it solve cyclic occlusion? **Yes.**

circularly occluded case

recovered ordering

amodal completion

content completion