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Outlines

~ Why unlabeled data?



Neural Networks v.s. Labeled Datasets

Evolution of CNN architectures (number of parameters in convolution layers)

LeNet (50K) VGG-16 (14.7M) ResNeXt-101 32x48d (829M)
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AlexNet (2.3M) ResNet-101(42.6M) Neural Arch. Search

Evolution of labeled datasets (humber of images)
LFW (13K) VGG2 (3.3M) ?
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CASIA-Webface (0.5M) MS1M (6M)




Neural Networks v.s. Labeled Datasets

A FLOPS A CNN Capability A Scale of
labeled datasets

time time time

Hardware Model Data



Neural Networks v.s. Labeled Datasets

CNN Capability A Scale of
Issues in labeling datasets: labeled datasets
* High labor cost
* Annotation noise and bias
* Low productionspeed
(several years) _ > — >
time time

Model Data



Unlabeled Data in Different Forms
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Conventional Unsupervised Learning

CPU

111111

TTTTTT

NERER

Low efficiency

Limited scenarios

How to better leverage unlabeled data in the era of deep learning?



Outlines

~ Supervised face clustering: a new trend



Face Recognition

& — Similarity

Face recognition in movies

Deep

Neural network
feature



Training of Face Recognition

Deep Classifier
feature

Labeled data



Big Data of Faces

surveillance



Face Clustering

Unlabeled Images Clustered Images




Face Clustering in Ancient Time

Face feature histogram

Regions

LBP features

Low representability
Vulnerable

High dimension

Before K-Means

A

After K-Means

: R

K-Means clustering

Relying on strong
assumptions
High computational cost




Challenges

1. Unlabeled data collected from unconstrained environments
have large variations = hand designed features are unreliable.

)
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dark overexposure




Challenges

2. Complicated inner-structures = hard to use priors or assumptions

Assumptions:

 KMeans: Samples obey Gaussian
distribution.

e Spectral: Clusters’sizeis balanced.

 DBSCAN: Clusters are dense regions.

Sample face clustersin practical



Challenges

3. Large-scale clustering =2 computational complexity

Datasets Images |dentities
VGG2 3.3 M 9K
MegaFace 4.7 M 672K

MS1M 5.8 M 85 K
Surveillance | Billion-level Million-level

Computation Complexity:

KMeans: O(N * Iter *x K),K € N
Spectral: O(N3)

DBSCAN: O(N?2), or O(Nlog(N))
HAC: O(N?3)



Face Clustering in Deep Learning Era

Face classification

Face clustering

Labeled
Data

Unlabeled
Data
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Face embedding network

Deep
feature

Deep
feature

Classifier
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Pseudo-labels

Can we make clustering learnable?




Consensus-Driven Propagation (CDP) [ECCV’18]

e Objective: Learning better linkages.

Faces organized in
an affinity graphs




Consensus-Driven Propagation (CDP) [ECCV’18]

Unlabelled
data

—— — —————————— ——— — — —— — — — ——,

Base
model

Committee
#1

Committee
#n

o ——————————————— —

Deep Feature KNN Graph

Input for
Mediator

Challenges and solutions:

1. Data with large variations: multi-view information.
2. Complicated inner-structures: learnable module.
3. Computation complexity: local representations.

Pairs from
base model

@
AN
Consensus-driven  Propagating
Graph labels

Mediator Classified
(MLP Classifier) pairs



Consensus-Driven Propagation (CDP) [ECCV’18]

our metho

Comparison of different methodson MS1M face clustering

d<

F-score (%) Time

methods

200K 600K 1.4M 600K
K-Means 83.5 fail fail fail
Mini-batch K-Means 88.9 84.0 fail 2266s
HAC 92.6 90.6 fail 61h
FastHAC 69.4 80.9 fail 16h
DBSCAN 79.0 76.2 fail 80h .
HDBSCAN 86.1 81.5 fail 48h
, CDP (single model) 89.2 86.7 85.2 85s “ |
. CDP (multi model) 95.8 94.2 93.1 556s




Effectiveness of CDP

Improvements on face recognition in MegaFace through clustering

Data Performance
9% labeled 61.78%
9% labeled + 91% unlabeled (HAC) 62.45%
9% labeled + 91% unlabeled (CDP) 78.18%
100% labeled 78.52%

CDP makes unlabeled data
as effective as labeled ones.




CDP as a Data Cleaner

CDP cleans out low-quality faces.



From Image to Graph

image

.

image - graph
pixel 2> vertex
grid - edge
CNN - GCN

\

)

segmentation

\ instance

]

bounding
boxes

graph

clustering

subgraphs



Learning to Cluster Faces on an Affinity Graph [CVPR’19 Oral]

——————

Previous methods !

3

Our method

proposals



Learning to Cluster Faces on an Affinity Graph [CVPR’19 Oral]

region proposal detection segmentation
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—» Clusters
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Rand/om seed
7251

O (O}« loU " > 1

> ... —> |- - 1

. 9 ... —>]

o[ ™[C} > 10p <

o >0

Graph Conv Pooling FC

Graph Conv

Face clustering as anchor-based detection



Learning to Cluster Faces on an Affinity Graph [CVPR’19 Oral]

Evaluation on MS1M

Methods #clusters | Precision | Recall | F-score | Time
K-Means [ 19] 5000 52.52 70.45 60.18 13h
DBSCAN [4] 352385 72.88 42.46 53.5 100s
HAC [24] 117392 66.84 70.01 68.39 18h
Approximate Rank Order [1] | 307265 81.1 7.3 13.34 250s
CDP [20] 29658 80.19 70.47 75.01.( 350s X
GCN-D 19879 05.72 | 7642 | 8499 20005> .
Slightly slower
GCN-D + GCN-S 19879 | 9824 | 7593 | 85.66, |\ 2200« 70N
N

Much stronger



Learning to Cluster Faces via Confidence and Connectivity
Estimation [CVPR’20]

Construct subgraphs Estimate Connectivity
based on confidence for selected vertices
Graph Obtain clusters
Affinitv Graph Estimated Confidence ) ® | onvolution /(,‘)/__,. via deducing trees
inity Grap : 'y
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Face clustering as anchor-free detection



Outlines

~ Unsupervised representation learning from object-centric images



What is Unsupervised Representation Learning?

Unsupervised Learning Representation Learning

Self-Supervised
Learning

PCA
Clustering
GMM

ImageNet Pre-train

Depth & Ego-motion
Optic Flow Jigsaw Puzzles DeepCluster

Correspondence Motion Propagation  op|ineDeepCluster

De-occlusion Rotation Prediction
MoCo



What is Self-Supervised Learning (SSL)?

Self-Supervised Learning
Annotation free To learn

something new

-

Does image in-
painting belong
to self-supervised
learning?

self-supervised proxy task

CNN

@initialize

CNN

target task data

A typical pipeline

target task



Self-Supervised Proxy/Pretext Tasks

Motion prediction Moving foreground segmentation

/lotion pfopagation



Essence: 1. Prior

* Appearance prior * Physics prior

Rotation Prediction

* Motion tendency prior
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, priors are more
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i | s J
Motion prediction Motion propagation
(Fine-tuned for seg:39.7% mloU) (Fine-tuned for seg: 44.5% mloU)




Essence: 2. Coherence

e Spatial coherence  Temporal coherence

Solving Jigsaw Puzzles

Temporal order verification



Essence: 3. Structure of Data

)
o)

Pull together

Intra-image
Transform

|

Push apart

Image j

Transform

Pull together

Intra-image

Instance Discrimination
(Contrastive Learning)
* NIPD

e CPC

* MoCo

e SimCLR



Typical Contrastive-Based SSL

embedding projection
B MLP
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Typical Contrastive-Based SSL

embedding _____ projection
B MLP
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Essence: 3. Structure of Data

Both are optimal for Instance
Discrimination. Why does the
final optimized feature space
look like the second case?

Color: category
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Optimal solution (suppose) Optimal solution (actual)




Shortcuts to Avoid

* Continuity

Solving Jigsaw Puzzles



Shortcuts to Avoid

* Solutionregarding continuity

Solving Jigsaw Puzzles



Shortcuts to Avoid

« ChromaticAberration (2. %) « Coma(®E %)

Coma

« Distortion (#%74%) * Vignetting (& )

THE
T

Barrel-type Pincushion-type

Do not apply

~

heavy vignetting

effects in your
photos!!!

J




Shortcuts to Avoid

* Solutionregarding aberration

After aberration correction . .
Solving Jigsaw Puzzles



Ambiguity

* Appearance prior

Physics prior

Rotation Prediction

* Motion tendency prior * Kinematics prior

\

1. Low-entropy priors are
' less ambiguous.
i T 2. Any other solutions?
i e J
Motion prediction Motion propagation
(Fine-tuned for seg:39.7% mloU) (Fine-tuned for seg: 44.5% mloU)




Difficulty

Easy mode Normal mode Difficult mode Hell mode

[ How to design the difficulty of the task?




open-mmlab/OpenSelfSup
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High-efficiency ® Watch 36 7 Star 967 % Fork 101
Distributed & Mixed Precision Training
Integrity and Extensibility
All methods in one framework
Relative Location | Rotation Prediction Deep Clustering NPID
ODC MoCo SimCLR BYOL
Fair Comparisons
Standardized benchmarks
Linear Semi-supervised SVM & Object
classification classification Low-shot SVM detection




Outlines

~ Self-supervised learning in scene understanding



Scene Understanding

Hotel room Car interior

Hayfield Skyscraper
Scene classification

Segmentation Depth estimation



Learning from Motion

1. Motion reflects the kinematic properties or physical structures of objects.
2. Motionis easyto obtain, without manualannotations.

Optical flow
estimation

II )

O

Image pair Motion (optical flow)



Learning from Motion Tendency Priors

-~ Motion is ambiguous.

(a) Input Image (b) Prediction (¢) Ground Truth

Motion prediction from staticimages. [1]

[1] Walker J, Gupta A, Hebert M. "Dense optical flow prediction from a staticimage." In CVPR, 2015.



Learning from Motion Consistency Priors

()

X Motion is complicated.

-ur
==

Motionis similar

4

Pixels on the
same object

Some objects have high degrees of
Learn from motion consistency [2] freedom, e.g., human.

[2] Mahendran A, Thewlis J, Vedaldi A. Cross pixel optical-flow similarity for self-supervised learning. In ACCV, 2018.



Learning from Kinematic (JZzh%) Priors

' > rigid

> articulated

» deformable

ik

affect

[ Kinematic Priors ]

> | rumoton |




Learning from Kinematic Priors

[KinematicPriors] I{::I [I\/IotionTendency] > [ Full Motion ]

? / /




Approximate Motion Tendency

Without the annotationofrigid
parts, how to approximate the
& motion tendency?




Conditional Motion Propagation [CVPR’19]

T Motion tendency

sparse motion
encoder

dense motion decoder

B >

fusion net

propagation
nets

static image / optical flow

T

Expected kinematic properties Full motion



Conditional Motion Propagation [CVPR’19]




Application: Kinematic-Grounded Video Generation

£




Application: Kinematic-Grounded Video Generation




Application: Kinematic-Grounded Video Generation

For general objects



Self-Supervised Scene De-occlusion [CVPR’20 Oral]

Real-world scene Intact objects with invisible parts Background
+ ordering graph



What We Have

 Atypicalinstance segmentationdataset:

Modal mask Amodal mask
Modality Available
Image V
Modal mask V
RGB image Modal masks & Category labels Ordering X
Amodal Mask X




Data Analysis: Occlusion Ratio

0%

Proportion %
30

25
20
15
10
5

0

0 10 20 30 40 50 60 70 80 90 100
Occlusion ratio %

0%



Amodal Completion

What’s the shape of
the yellow objects?

amodal masks
as supervision

Full completion 1 1 1
Ground truth /: Zi \ :!

Whatif we do not havethe ground truth?




Partial Completion

full completion

————>

Trim down

,Wf\ ___________ B L

‘% partial B%partlal Zﬂé
/ ‘/complet|on ’ completion

\
A surrogate ittt
object trainable

- e e e e = = =



Train Partial Completion Net-Mask (PCNet-M)

r

Target

inputs to PCNet-M



Tasks to Solve
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Occluders
of an object
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\ 2. Amodal completion

visible (modal) intact (amodal)
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Invisible regions




Dual-Completion for Ordering Recovery

(a) B B
il

(b) PCNet-M

(inference)

(a) Regarding Al as the target and A2 as the surrogate occluder, the incremental area of Al: AA7|A,
(b) Regarding A2 as the target and Al as the surrogate occluder, the incremental area of A2: AA; |4,



Ordering-Grounded Amodal Completion

3o recover @\
ordering

get all
ancestors

>

the union of all
category ances
T ———————— T e ———————— ] —

tors {2,4} as the eraser

|

|

|

|

y , A |
b .. |
|

|

|

|

|

inputs to PCNet-M

i

PCNet-M

(inference)

output amodal



Why All Ancestors?

@

PCNet-M

0

‘ I st-order ancestors wrong completion
‘ @

to complete \e
object #1 (a circle) &

all ancestors correct completion

X

PCNet-M




Train Partial Completion Net-Content (PCNet-C)

category

Which object theJ
missingregion
[The mlssmg region.

belongs to.

inputs to PCNet-C PCNet-C Target




Amodal-Constrained Content Completion

occluders amodal mask
L ) |

intersection

1

&
I I | '
I .
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«

modal mask erased image PCNet-C decomposed object
(inference)



Compared to Image Inpainting

image:> na

inpainting

erased image

y

modal mask erased image



Scene De-occlusion

Real-world scene Objects with invisible parts Background
+ ordering graph



Application: Image Manipulation

delete swap shift reposition

modal-based

manipulationff before




Open

De-occlusion

Show Objects

Reset

Insert

Save As



Future Directions with Scene De-occlusion

o Data augmentation /re-compositionforinstance segmentation.
e Ordering prediction for mask fusion in panopticsegmentation.

e Occlusion-aware augmented reality.

No need for extra
annotations!




What’s the Intrinsic Methodology?

Trim down
an VRN
( [ \
\ ,/ \ ’/
M‘lz\ MO/\
7 /\ P /\
N v . \{ A carefully designed
Inspiratio Proxy: partial completion inference scheme

SR B

Essence: prior of shape Target: scene de-occlusion
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Discussion
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Discussion

] F Conditional motion propagation 14 F] LA T4 N 2



Application: Interactive Segmentation




Extensions

(a) Colorization (b) Inpainting (¢) Super-resolution

(d) Adversarial defense

vl

jigsaw puzzle x oystercatcher «

(f) Category transfer

target  reconstruction  transfer to other categories
e morphing

target A reconstruction A interpolation — reconstruction B target B

Deep Generative Prior [ECCV’20 Oral] More: xiaohangzhan.github.io



